

MD-SC-2048

SIN-COS Photoelectric Encoder

User Guide

Preface

Thank you for purchasing the SIN-COS photoelectric encoder developed by MONADRIVE.

The SIN-COS photoelectric encoder produces sine waves. Through the changes of sine and cosine waves, the subdivided voltage can be obtained. Then, output signals of the encoder is subdivided as required to improve resolution. The SIN-COS photoelectric encoder adopts the new-type conical shaft and expanders for easy fixture. This further simplifies the motor control system structure. The SIN-COS photoelectric encoder is applicable to elevators, servos, machine tools, and automatic control equipment. It is mainly applied to control systems of permanent magnet synchronous elevators.

Before using the encoder, read this guide thoroughly.

1. Product Information

Technical Specifications

Elect	rical Parameters	Mechanic	al and Environmental Parameters		
Power supply voltage	5V±5%	Shaft hole diameter	Φ9.25 mm (conical shaft 1:10)		
Current consumption	Max. 200 mA	Connection method	Expander		
Response frequency	Max. 50 kHz		2000 rpm		
Transmission distance	15 m	Startup torque	5×10 ⁻³ N·m		
Insulation resistance	>200 MΩ (500 VAC)	Axial load	10N		
Output sne and cosine differentia signal Aamplitude (Vpp)	Vpp=1 V±0.2 V		10N		
Output Z-code signal amplitude (Vz)	≥200 mV	resistance	10 G, 11 ms, 2 hours each in directions X, Y, and Z		
DC offset voltage	Vd=2.5 V±20 mV	Vibration resistance	50 m/S², 40–200 Hz, 2 hours each in directions X, Y, and Z		
THD	≤2%	MOI	4×10 N · ms ²		
Resolution	2048 P/R	IP rating	IP40		
Output waveform	Sine wave analog signal	Ambient temperature	–20°C to +100°C		
Output signal	A, A-, B, B-, C, C-, D, D-	Storage temperature	-40°C to +100°C		
Signal phase relationship	Phase A advancing phase B and phase C advancing phase D by 90° clockwise according to the conical shaft's direction	Humidity	95% RH (non-condensing)		

2. Application Circuits and Wiring

Application Circuits

Recommended ABZ signal load resistance Zo: 120 Ω
Recommended CD signal load resistance Zo: 1 kΩ
$Ro \leq 50 \Omega$

☞ Waveform (A, B, Z, C, and D signals are differentially measured by the oscilloscope.)

380' electrical angle
a a a a a a a a a a a a a a a a a a a

Signal amplitude M: 0.45 V to 0.55 V, typical: 0.5 Vpp Symmetric tolerance: $|P\text{-N}|/2:\leqslant 0.065$ V Phase difference between A and B/C and D: 90° $\pm 10^\circ$

Z Signal Effective component G: 0.20 to 0.85 Static level: ≤ 1.7 V Switching threshold: 0.04 V to 0.68 V Z signal width: K, L: 180° ±90°

Wiring Description

	2*7 socket	3	12	9	6	7	8	1
	DB15 socket	5	6	8	1	3	4	11
	Description	А	A-	В	B-	Ζ	Z-	С
	2*7 socket	14	11	4	2/13	5/10	Housing	-
	DB15 socket	10	12	13	9	7	Housing	-
	Description	C-	D	D-	+5V	0 V	Shield	-

Note: You need to purchase cables for the DB15 socket separately. The standard length of the cable is 7.5 m. Check that the sequence of pins of different PG cards is consistent, and connect cables by referring to the table above.

3. Installation

Mounting Dimensions

Figure 3-1 Mounting dimensions Figure 3-2 Recommended traction machine dimensions for the encoder

- Installation and Uninstallation Description
- Installation diagram

1) Remove the front cover of the encoder to expose the conical shaft, as shown in Figure 3-3.

2) Put the encoder into the location hole of the traction machine until the conical shaft is stuck. Put the M5*50 inner

